Types of pH Calculations in Aqueous Solution (rev. B 7/25/2024)

It is best to think of acids and bases in Bronsted-Lowry terms.

 The simplest situation is for a strong acid in water. Use the definition of pH and the convention that the hydronium ion activity is equal to the acid concentration, because of 100% dissociation. Use HA as the formula for a strong acid.

 $HA_{(aq)} + H_2O_{(I)} \rightarrow H_3O^+_{(aq)} + A^-_{(aq)}$

 $pH = - \log [H_3O^+] = - \log [HA]$

2. This also works for strong bases. Use B as the formula for a strong base.

 $B_{(aq)} + H_2O_{(l)} \rightarrow OH^{-}_{(aq)} + BH^{+}_{(aq)}$ pOH = - log [OH⁻] = - log [B] pH = 14 - pOH = 14 + log [B]

3. For a weak acid in water, the chemical equation is the same, but the acid dissociates less.

 $HA_{(aq)} + H_2O_{(I)} \rightarrow H_3O^+_{(aq)} + A^-_{(aq)}$

 $K_a = [H_3O^+] [A^-] / [HA]$

Create an ICE table

Reaction	[HA]	[H₃O⁺]	[A ⁻]
Initial	[HA]	0	0
Change	-X	х	х
Equilibrium	[HA] - x	х	х

 $K_a = x^2 / [HA - x]$

If dissociation is minimal (< 5 %), assume x << [HA]. Be sure to verify after completing calculations.

 $K_a = x^2 / [HA]$

 $[\mathsf{H}_3\mathsf{O}^+] = \mathsf{V}(\mathsf{K}_a[\mathsf{H}\mathsf{A}])$

 $pH = -0.5 \log (K_a[HA])$

4. This also works for weak bases.

 $B_{(aq)} + H_2O_{(I)} \rightarrow OH^{-}_{(aq)} + BH^{+}_{(aq)}$ $K_b = [OH^{-}] [BH^{+}] / [B]$

Create an ICE table

Reaction	[B]	[OH ⁻]	[BH⁺]
Initial	[B]	0	0
Change	-X	х	х
Equilibrium	[B] - x	х	х

 $K_b = x^2 / [B - x]$

If dissociation is minimal (< 5 %), assume x << [B]. Be sure to verify after completing calculations.

 $K_{b} = x^{2} / [B]$

 $[OH^{-}] = V(K_{b}[B])$

 $pOH = -0.5 \log (K_b[B])$

 $pH = 14 - pOH = 14 + 0.5 \log (K_b[B])$

5. For a weak acid neutralized by a strong base, assume the conjugate base is dominant, but dissociates slightly.

 $A^{-}(aq) + H_2O(I) \rightarrow HA(aq) + OH^{-}(aq)$

 $K_{b} = [HA] [OH^{-}] / [A^{-}]$

Create an ICE table

Reaction	[A ⁻]	[HA]	[OH ⁻]
Initial	[A ⁻]	0	0
Change	-X	х	х
Equilibrium	[A⁻ - x]	х	х

 $K_b = x^2 / [A^- - x]$

If dissociation is minimal (< 5 %), assume x << [B]. Be sure to verify after completing calculations.

 $K_{b} = x^{2} / [A^{-}]$

 $[\mathsf{OH}^{\scriptscriptstyle -}] = \mathsf{V}(\mathsf{K}_\mathsf{b}[\mathsf{A}^{\scriptscriptstyle -}])$

 $pOH = -0.5 \log (K_b[A^-])$

 $pH = 14 - pOH = 14 + 0.5 \log (K_b[A^-])$

6. For a weak base neutralized by a strong acid, assume the conjugate acid is dominant, but dissociates slightly.

 $BH^{+}_{(aq)} + H_2O_{(I)} \rightarrow B_{(aq)} + H_3O^{+}_{(aq)}$

 $K_a = [B] [H_3O^+] / [BH^+]$

Create an ICE table

Reaction	[BH+]	[B]	[H₃O⁺]
Initial	[BH⁺]	0	0
Change	-X	х	х
Equilibrium	[BH⁺ - x]	х	х

 $K_a = x^2 / [BH^+ - x]$

If dissociation is minimal (< 5 %), assume x << [BH⁺]. Be sure to verify after completing calculations.

 $K_a = x^2 / [BH^+]$

 $[H_3O^+] = V(K_a[BH^+])$

 $pH = -0.5 \log (K_a[BH^+])$

7. For buffers, use the Henderson-Hasselbalch equation, which is the negative logarithm of the K_a equation.

 $pH = pK_a + log([A^-] / [HA])$

 $pOH = pK_b + log ([HB^+]/[B])$

It's all about the ratio.

If the ratio is > 1, there is more conjugate base than acid and pH is higher than pK_a by the logarithm of the ratio.

If the ratio is < 1, there is more acid than conjugate base and the pH is less than pK_a by the logarithm of the ratio.

Туре	Ka	рКа	рН	Kb	рКь	рОН
Strong acid	≥1x10 ⁰	≤1	= - log [HA]	≤1x10 ⁻¹⁴	≥14	= 14 + log [B]
Salt of weak base			= -0.5 log (K _a [BH ⁺])			= 14 + 0.5 log (K _a [BH ⁺])
Weak acid			= -0.5 log (K _a [HA])			= 14 + 0.5 log (K _a [HA])
Buffer			$= pK_a + \log ([A^-]/[HA])$			$= pK_b + log ([HB^+]/[B])$
Weak base			= 14 + 0.5 log (K _b [B])			= -0.5 log (K _b [B])
Salt of weak acid			= 14 + 0.5 log (K _b [A ⁻])			= -0.5 log (K _b [A ⁻])
Strong base	≤1x10 ⁻¹⁴	≥14	= 14 + log [B]	≥1x10 ⁰	≤1	= - log [B]

Rev. B – Corrected errors in Henderson-Hasselbalch formula for base